Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Infect Genet Evol ; 117: 105543, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38135265

RESUMO

Livestock plays a crucial role in ensuring food security and driving the global economy. However, viral infections can have far-reaching consequences beyond economic productivity, affecting the health of cattle, as well as posing risks to human health and other animals. Identifying viruses present in fecal samples, a primary route of pathogen transmission, is essential for developing effective prevention, control, and surveillance strategies. Viral metagenomic approaches offer a broader perspective and hold great potential for detecting previously unknown viruses or uncovering previously undescribed agents. Ubaté Province is Colombia's dairy capital and a key center for livestock production in the country. Therefore, the purpose of this study was to characterize viral communities in fecal samples from cattle in this region. A total of 42 samples were collected from three municipalities in Ubaté Province, located in central Colombia, using a convenient non-probabilistic sampling method. We utilized metagenomic sequencing with Oxford Nanopore Technologies (ONT), combined with diversity and phylogenetic analysis. The findings revealed a consistent and stable viral composition across the municipalities, primarily comprising members of the Picornaviridae family. At the species level, the most frequent viruses were Enterovirus E (EVE) and Bovine Astrovirus (BoAstV). Significantly, this study reported, for the first time in Colombia, the presence of viruses with veterinary importance occurring at notable frequencies: EVE (59%), Bovine Kobuvirus (BKV) (52%), and BoAstV (19%). Additionally, the study confirmed the existence of Circular replicase-encoding single-stranded (CRESS) Virus in animal feces. These sequences were phylogenetically grouped with samples obtained from Asia and Latin America, underscoring the importance of having adequate representation across the continent. The virome of bovine feces in Ubaté Province is characterized by the predominance of potentially pathogenic viruses such as BoAstV and EVE that have been reported with substantial frequency and quantities. Several of these viruses were identified in Colombia for the first time. This study showcases the utility of using metagenomic sequencing techniques in epidemiological surveillance. It also paves the way for further research on the influence of these agents on bovine health and their frecuency across the country.


Assuntos
Astroviridae , Enterovirus , Kobuvirus , Vírus , Humanos , Animais , Bovinos , Filogenia , Prevalência , Colômbia/epidemiologia , Astroviridae/genética , Fezes , Metagenômica
2.
J Vet Diagn Invest ; 35(6): 742-750, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37571922

RESUMO

Calf diarrhea results in significant economic loss and is caused by a variety of pathogens, including enteric viruses. Many of these viruses, including bovine norovirus (BNoV), bovine torovirus (BToV), and bovine kobuvirus (BKoV), are recognized as the causative agents of diarrhea; however, they remain understudied as major pathogens. We developed a multiplex reverse-transcription quantitative real-time PCR (RT-qPCR) assay for rapid and simple detection of BNoV, BToV, and BKoV. Our method had high sensitivity and specificity, with detection limits of 1 × 102 copies/µL for BNoV, BToV, and BKoV, which is a lower detection limit than conventional RT-PCR for BNoV and BKoV and identical for BToV. We tested fecal samples from 167 diarrheic calves with our multiplex RT-qPCR method. Viral detection was superior to conventional RT-PCR methods in all samples. The diagnostic sensitivity of the multiplex RT-qPCR method (100%) is higher than that of the conventional RT-PCR methods (87%). Our assay can detect BNoV, BToV, and BKoV in calf feces rapidly and with high sensitivity and specificity.


Assuntos
Doenças dos Bovinos , Kobuvirus , Norovirus , Torovirus , Animais , Bovinos , Torovirus/genética , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Kobuvirus/genética , Diarreia/diagnóstico , Diarreia/veterinária , Fezes , Doenças dos Bovinos/diagnóstico
3.
Virology ; 585: 215-221, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37384968

RESUMO

Aichi virus C, a species in the genus Kobuvirus, causes diarrhea diseases in pigs and goats and pose health threat and economic loss for stock farming. A nearly complete genome sequence of caprine kobuvirus GCCDC14 was obtained from an anal swab of a black goat died from diarrhea collected in Hubei, China in 2019. Phylogenetic analyses suggested that GCCDC14 is a novel genotype of Aichi virus C, forming a sister branch to other caprine kobuviruses, with P1 and VP0 genes more closely related to porcine kobuviruses and VP3 in an independent branch. Compared to previous caprine kobuviruses, unique amino acid changes in the poly-l-proline type II helix structure of VP0 and VP1 were found, which may affect the cellular machinery of host and pathogenicity. This study indicates the presence of the kobuvirus with continuously evolving features and emphasizes the surveillance and genetic evolution investigation of kobuviruses for safety of husbandry.


Assuntos
Kobuvirus , Infecções por Picornaviridae , Animais , Suínos , Kobuvirus/genética , Cabras , Filogenia , Infecções por Picornaviridae/epidemiologia , Genótipo , Diarreia , Fezes
4.
Braz J Microbiol ; 54(3): 2527-2534, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344656

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a virus that can cause diarrhea in pigs, resulting in significant economic losses to the pig industry. The mutation of the virus and its co-infection with other enteroviruses leads to poor control of PEDV infection. In this study, we found that the diarrhea outbreak in a pig farm in Shandong Province was mainly caused by PEDV infection. Through high-throughput sequencing, we also detected one other diarrhea-related virus (porcine kobuvirus). In the phylogenetic analysis and molecular characterization of the detected PEDV S gene and PKV, it was found that the S gene of the PEDV strain detected in this study (named SD22-2) had more mutations than the CV777 strain. The highest homology between PKV (named SD/2022/China) detected in this study and other strains was only 89.66%. Based on polyprotein, we divided SD/2022/China strains into a new grouping (designated group 4) and detected recombination signals. In summary, SD22-2 detected in this study is a new PEDV variant strain, and SD/2022/China strain might be a novel PKV strain. We also found the co-infection of the new PEDV variant and the novel PKV isolated from piglets with diarrhea. Our data suggested the importance of continuous surveillance of PEDV and PKV.


Assuntos
Coinfecção , Infecções por Coronavirus , Kobuvirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Filogenia , Vírus da Diarreia Epidêmica Suína/genética , Kobuvirus/genética , Infecções por Coronavirus/epidemiologia , Diarreia/epidemiologia , China/epidemiologia
5.
Microbiol Spectr ; 11(3): e0009923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37097198

RESUMO

Aichivirus D (AiV-D) is a newly emerging Kobuvirus detected in bovine and sheep, and information is limited regarding its biological significance and prevalence. This study aimed to explore both the prevalence and characteristics of AiV-D in yaks. From May to August 2021, 117 fecal samples were collected from yaks with diarrhea in three provinces of China's Qinghai-Tibet Plateau, 15 of which were selected and pooled for metagenomic analysis. A high abundance of AiV-D sequences was obtained. Of the 117 diarrhea samples, 29 (24.8%) tested AiV-D-positive, including 33.3% (14/42) from Sichuan, 21.1% (8/38) from Qinghai, and 18.9% (7/37) from Tibet, respectively, suggesting a wide geographical distribution of the AiV-D in yaks in the Qinghai-Tibet Plateau. Furthermore, three AiV-D strains were successfully isolated using Vero cells. Significantly, the AiV-D strain could cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, duodenum, colon, cecum, and rectum. Based on phylogenetic analysis of the genome and capsid protein P1 (VP0, VP3, and VP1 genes), the yak AiV-D strains likely represent a novel genotype of AiV-D. On the whole, this study identified a novel genotype of AiV-D from yaks, which was successfully isolated, and confirmed that this virus is a diarrhea pathogen in yaks and has a wide geographical distribution in the Qinghai-Tibet Plateau. Our results expand the host range of AiV-D and the pathogen spectrum of yaks and have significant implications for diagnosing and controlling diarrhea in yaks. IMPORTANCE In this study, we identified and successfully isolated a novel genotype of AiV-D from yaks. Animal infection confirmed that this virus can cause diarrhea, intestinal bleeding, and inflammation in yak calves via oral inoculation. The virus was distributed in the ileum, jejunum, cecum, duodenum, colon, and rectum. All of these results have significant implications for diagnosing and controlling diarrhea in yaks. These novel AiV-D strains have a wide geographical distribution in yaks from the Qinghai-Tibet Plateau in China. In addition to expanding the host range of AiV-D and the pathogen spectrum of yaks, these findings can increase knowledge of the prevalence and diversity of AiV-D.


Assuntos
Kobuvirus , Chlorocebus aethiops , Bovinos , Animais , Ovinos , Filogenia , Kobuvirus/genética , Células Vero , Diarreia/epidemiologia , Diarreia/veterinária , Inflamação
6.
Clin Infect Dis ; 77(4): 620-628, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37078608

RESUMO

BACKGROUND: Metagenomic next-generation sequencing (mNGS) was used to assess patients with primary or secondary immune deficiencies (PIDs and SIDs) who presented with immunopathological conditions related to immunodysregulation. METHODS: Thirty patients with PIDs or SIDs who presented with symptoms related to immunodysregulation and 59 asymptomatic patients with similar PIDs or SIDs were enrolled. mNGS was performed on organ biopsy. Specific Aichi virus (AiV) reverse-transcription polymerase chain reaction (RT-PCR) was used to confirm AiV infection and screen the other patients. In situ hybridization (ISH) assay was done on AiV-infected organs to identify infected cells. Virus genotype was determined by phylogenetic analysis. RESULTS: AiV sequences were detected using mNGS in tissue samples of 5 patients and by RT-PCR in peripheral samples of another patient, all of whom presented with PID and long-lasting multiorgan involvement, including hepatitis, splenomegaly, and nephritis in 4 patients. CD8+ T-cell infiltration was a hallmark of the disease. RT-PCR detected intermittent low viral loads in urine and plasma from infected patients but not from uninfected patients. Viral detection stopped after immune reconstitution obtained by hematopoietic stem cell transplantation. ISH demonstrated the presence of AiV RNA in hepatocytes (n = 1) and spleen tissue (n = 2). AiV belonged to genotype A (n = 2) or B (n = 3). CONCLUSIONS: The similarity of the clinical presentation, the detection of AiV in a subgroup of patients suffering from immunodysregulation, the absence of AiV in asymptomatic patients, the detection of viral genome in infected organs by ISH, and the reversibility of symptoms after treatment argue for AiV causality.


Assuntos
Kobuvirus , Doenças da Imunodeficiência Primária , Viroses , Humanos , Kobuvirus/genética , Filogenia , Pacientes
7.
Arch Virol ; 168(4): 112, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918497

RESUMO

In this study, rectal samples collected from 60 stray dogs in dog shelters were screened for canine kobuvirus and other enteroviruses by quantitative real-time reverse transcription polymerase chain reaction. Canine kobuvirus was detected in 25% (15/60) of the samples. In the 15 positive samples, the coinfection rates of canine distemper virus, canine coronavirus, canine astrovirus, canine norovirus, and canine rotavirus were 26.67%, 20.00%, 73.33%, 0%, and 20.00%, respectively. Phylogenetic analysis based on partial VP1 sequences identified a novel canine kobuvirus that was a recombinant of canine and feline kobuvirus. Bayesian evolutionary analysis revealed that the rate of evolution of the VP1 gene of canine kobuvirus was 1.36 × 10-4 substitutions per site per year (95% highest posterior density interval, 6.28 × 10-7 - 4.30 × 10-4 substitutions per site per year). Finally, the divergence time of VP1 was around 19.44 years ago (95% highest posterior density interval, 12.96-27.57 years).


Assuntos
Doenças do Gato , Doenças do Cão , Kobuvirus , Infecções por Picornaviridae , Cães , Animais , Gatos , Kobuvirus/genética , Filogenia , Teorema de Bayes , China/epidemiologia , Fezes
8.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680281

RESUMO

The newly identified porcine Kobuvirus (PKV) has raised concerns owing to its association with diarrheal symptom in pigs worldwide. The process involving the emergence and global spread of PKV remains largely unknown. Here, the origin, genetic diversity, and geographic distribution of PKV were determined based on the available PKV sequence information. PKV might be derived from the rabbit Kobuvirus and sheep were an important intermediate host. The most recent ancestor of PKV could be traced back to 1975. Two major clades are identified, PKVa and PKVb, and recombination events increase PKV genetic diversity. Cross-species transmission of PKV might be linked to interspecies conserved amino acids at 13-17 and 25-40 residue motifs of Kobuvirus VP1 proteins. Phylogeographic analysis showed that Spain was the most likely location of PKV origin, which then spread to pig-rearing countries in Asia, Africa, and Europe. Within China, the Hubei province was identified as a primary hub of PKV, transmitting to the east, southwest, and northeast regions of the country. Taken together, our findings have important implications for understanding the evolutionary origin, genetic recombination, and geographic distribution of PKV thereby facilitating the design of preventive and containment measures to combat PKV infection.


Assuntos
Kobuvirus , Infecções por Picornaviridae , Doenças dos Suínos , Suínos , Animais , Coelhos , Ovinos , Filogeografia , Kobuvirus/genética , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Infecções por Picornaviridae/diagnóstico , Recombinação Genética
9.
Infect Genet Evol ; 104: 105362, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36084837

RESUMO

Porcine kobuvirus (PKV) infection is very common in both healthy pigs and diarrhea pigs throughout the world. However, there is no proof that it causes diarrhea, and little is known about its role in diarrhea. There are only a few reports concerning porcine kobuvirus separation at present, which makes investigating its invasion and pathogenesis mechanisms difficult. This study sequenced the entire genome of a porcine kobuvirus strain termed "Wuhan2020" after it was isolated from intestinal tissue samples of healthy piglets. The analysis results revealed that it shared the most resemblance with the WUH1 strain (89.5%) and belonged to the same evolutionary branch as the Hungarian strain S-1-SUN. The PKV was located using the in situ hybridization (ISH) approach, which revealed that it was colonized in intestinal villus epithelial cells and lymphocytes in the Peyer's patch. In general, we analyzed the genetic evolution of PKV, discovered PKV susceptible cells and determined PKV localization in the intestine of infected pigs, providing a reference for future research.


Assuntos
Kobuvirus , Infecções por Picornaviridae , Doenças dos Suínos , Animais , China , Diarreia , Fezes , Genômica , Intestinos , Kobuvirus/genética , Filogenia , Infecções por Picornaviridae/veterinária , Análise de Sequência , Suínos
10.
Microb Pathog ; 170: 105703, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35934204

RESUMO

Porcine epidemic diarrhea virus (PEDV) frequently causes diarrhea outbreaks. However, whether newly discovered enteric viruses such as porcine kobuvirus (PKV) and porcine astroviruses (PAstVs) are also correlated with diarrhea is still unclear. Diarrhea outbreaks were reported in a PEDV-vaccinated pig farm in Xinjiang Uygur Autonomous Region of China from 2019 to 2020. PEDV was a common pathogen detected in fecal samples by routine RT-PCR assays. The PEDV positive fecal sample was used for pathogenic analysis due to the failure isolation of PEDV. The challenged neonatal piglets appeared watery diarrhea within one day post infection (dpi) and all died within 6 dpi. Histopathological and immunohistochemical examinations supported that PEDV is a major pathogen causing intestinal lesions. To further explore enteric viruses associated with neonatal piglet diarrhea, metagenomics sequencing was performed for the diarrheic piglets. Remarkably, PKV was the most abundant virus (58.33%) followed by PEDV (34.45%) and PAstVs (7.22%), which were also confirmed by real-time RT-PCR assays. Significant in vivo replications of PEDV and PKV could only be observed in challenged piglets whilst PAstVs maintained similar virus loads in both challenged and mock infected piglets. Overall, this study provides first pathogenic and metagenomic evidence that significant proliferations of PEDV and PKV are closely associated with severe diarrhea in neonatal piglets, while PAstVs likely play limited roles in neonatal piglet diarrhea.


Assuntos
Infecções por Coronavirus , Kobuvirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Diarreia/epidemiologia , Kobuvirus/genética , Mamastrovirus , Metagenômica , Vírus da Diarreia Epidêmica Suína/genética , Suínos
11.
Viruses ; 14(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35746688

RESUMO

Bovine astrovirus (BoAstV) is a small non-enveloped virus with a single-stranded positive-sense RNA. In 1978, BoAstV was first found in calf diarrhea fecal samples in the United Kingdom and since then it has been reported in many other countries. It has wide tissue tropism and can infect multiple organs, including the intestine, nerves and respiratory tract. Since BoAstV is prevalent in healthy as well as clinically infected bovines, and is mostly associated with co-infection with other viruses, the pathogenic nature of BoAstV is still unclear. At present, there are no stable passage cell lines available for the study of BoAstV and animal model experiments have not been described. In addition, it has been reported that BoAstV may have the possibility of cross-species transmission. This review summarizes the current state of knowledge about BoAstV, including the epidemiology, evolution analysis, detection methods, pathogenesis and potential cross species transmission, to provide reference for further research of BoAstV.


Assuntos
Infecções por Astroviridae , Doenças dos Bovinos , Kobuvirus , Animais , Infecções por Astroviridae/epidemiologia , Bovinos , Fezes
12.
Rev. méd. Maule ; 37(1): 93-104, jun. 2022.
Artigo em Espanhol | LILACS | ID: biblio-1397752

RESUMO

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus belonging to the beta coronavirus family, it is the cause of the COVID-19 disease and the pandemic that has revolutionized and challenged the medical research profession and health systems around the world. With the first coronavirus SARS-CoV, the important role of the angiotensin 2-converting enzyme (ACE2) in the pathophysiology of the disease caused by the virus was discovered, a discovery that would lay the foundations on which research on the new coronavirus is based. The virus is capable of producing disease with a wide spectrum of clinical presentation, from asymptomatic patients to patients with severe acute respiratory distress syndrome (ARDS) requiring admission to intensive care units (ICU). The most commonly described symptoms are fever, cough, myalgia, and dyspnea. However, and with advances in the knowledge of SARS-CoV-2 infection, it has been discovered that gastrointestinal (GI) symptoms are frequent and have been associated with severe disease. Viral RNA has been found in feces, urine, blood, and other fluids, which could mean that there are other routes of infection that have not been considered a threat by the medical community until now. In this article, an updated bibliographic review of this topic is presented, with articles selected from the PubMed platform.


Assuntos
Humanos , Pancreatite , Pandemias/prevenção & controle , COVID-19 , COVID-19/complicações , Doença Aguda , Trato Gastrointestinal , Kobuvirus , Fezes , Febre/etiologia , SARS-CoV-2
13.
Front Public Health ; 10: 865605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517645

RESUMO

Background: Murine Kobuvirus (MuKV) is a novel picornavirus of the genus Kobuvirus, and was first identified in the feces of murine rodents in the USA in 2011. There is limited information on the transmission route of MuKV. Thus, we conducted a study to investigate virus detection rates in fecal, serum, throat, and lung tissue samples from murine rodents. Results: A total of 413 fecal samples, 385 lung samples, 269 throat swab samples, and 183 serum samples were collected from 413 murine rodents (Rattus norvegicus, Rattus tanezumi, and Rattus rattus) captured in urban Shenzhen. Kobuviruses were detected via RT-PCR. Only fecal samples were positive, with prevalence rates of 34.9% in Rattus norvegicus and 29.4% in Rattus tanezumi. Phylogenetic analysis based on partial 3D and complete VP1 sequence regions indicated that all of the MuKV sequences obtained belonged to Aichivirus A, and were genetically closely related to other MuKVs reported in China, Hungary, and the USA. Twenty-eight full-length MuKV sequences were acquired. Phylogenetic analysis of two sequences randomly selected from the two species (SZ59 and SZ171) indicated that they shared very high nucleotide and amino acid identity with one another (94.0 and 99.3%, respectively), and comparison with human Kobuvirus revealed amino acid identity values of ~80%. Additionally, a sewage-derived sequence shared high similarity with the rat-derived sequences identified in this study, with respective nucleotide and amino acid identity values from 86.5 and 90.7% to 87.2 and 91.1%. Conclusion: The results of the current study provide evidence that murine Kobuvirus is transmitted via the fecal-oral route.


Assuntos
Kobuvirus , Aminoácidos , Animais , Fezes , Kobuvirus/genética , Camundongos , Nucleotídeos , Filogenia , Ratos
14.
Transbound Emerg Dis ; 69(5): e2268-e2275, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35502695

RESUMO

Aichivirus C is an emerging virus in goats, but its biological significance remains unknown. In this study, 18 diarrheic and 16 non-diarrheic faecal samples of kids were collected from a farm with an on-going diarrheic outbreak in Sichuan Province, China in May 2021. Of these samples, 77.8% (14/18) of diarrheic samples were detected as Aichivirus C positive by RT-PCR, which was significantly higher than that of non-diarrheic faces (0%, p < .001); meanwhile, other common diarrhoea-causing pathogens in goats were not detected in diarrheic samples, except for two samples that were detected as caprine enterovirus positive, suggesting that Aichivirus C was associated with goat diarrhoea. Furthermore, five Aichivirus C strains were successfully isolated from positive samples using Vero cell lines and two isolates were further plaque-purified, named SWUN/F5/2021(10-6.7 TCID50 /0.1 mL) and SWUN/F6/2021(10-7 TCID50 /0.1 mL). Interestingly, Aichivirus C strain could cause systemic infection in experimental kids via oral administration, with the main clinical manifestation being severe watery diarrhoea. Histopathological changes observed in the duodenum and jejunum were characteristic, with shedding of mucosal epithelial cells. In addition, the virus was detected in tissues of diarrhoea kids naturally infected with Aichivirus C, exhibiting pathological changes similar to those of experimental infections. Overall, this study first isolated Aichivirus C and confirmed its pathogenicity in kids, with further study needed to better understand the virus pathogenicity. As Aichivirus C has been detected in South Korea, Italy and the USA and widely prevalent in southwest China, the results obtained here have significant implications for the diagnosis and control of diarrhoea in goats.


Assuntos
Diarreia , Doenças das Cabras , Kobuvirus , Animais , Diarreia/veterinária , Surtos de Doenças , Fezes , Doenças das Cabras/epidemiologia , Cabras , Kobuvirus/genética
15.
J Virol ; 96(7): e0008222, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293769

RESUMO

Kobuviruses are an unusual and poorly characterized genus within the picornavirus family and can cause gastrointestinal enteric disease in humans, livestock, and pets. The human kobuvirus Aichi virus (AiV) can cause severe gastroenteritis and deaths in children below the age of 5 years; however, this is a very rare occurrence. During the assembly of most picornaviruses (e.g., poliovirus, rhinovirus, and foot-and-mouth disease virus), the capsid precursor protein VP0 is cleaved into VP4 and VP2. However, kobuviruses retain an uncleaved VP0. From studies with other picornaviruses, it is known that VP4 performs the essential function of pore formation in membranes, which facilitates transfer of the viral genome across the endosomal membrane and into the cytoplasm for replication. Here, we employ genome exposure and membrane interaction assays to demonstrate that pH plays a critical role in AiV uncoating and membrane interactions. We demonstrate that incubation at low pH alters the exposure of hydrophobic residues within the capsid, enhances genome exposure, and enhances permeabilization of model membranes. Furthermore, using peptides we demonstrate that the N terminus of VP0 mediates membrane pore formation in model membranes, indicating that this plays an analogous function to VP4. IMPORTANCE To initiate infection, viruses must enter a host cell and deliver their genome into the appropriate location. The picornavirus family of small nonenveloped RNA viruses includes significant human and animal pathogens and is also a model to understand the process of cell entry. Most picornavirus capsids contain the internal protein VP4, generated from cleavage of a VP0 precursor. During entry, VP4 is released from the capsid. In enteroviruses this forms a membrane pore, which facilitates genome release into the cytoplasm. Due to high levels of sequence similarity, it is expected to play the same role for other picornaviruses. Some picornaviruses, such as Aichi virus, retain an intact VP0, and it is unknown how these viruses rearrange their capsids and induce membrane permeability in the absence of VP4. Here, we have used Aichi virus as a model VP0 virus to test for conservation of function between VP0 and VP4. This could enhance understanding of pore function and lead to development of novel therapeutic agents that block entry.


Assuntos
Kobuvirus , Animais , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Humanos , Kobuvirus/genética , Kobuvirus/metabolismo , Internalização do Vírus
16.
Vet Microbiol ; 266: 109366, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35176608

RESUMO

Swine are an important food source worldwide and producers may not always be aware of the variety of the pathogens infecting their herds, particularly viruses. In this study, 12 enteric viruses were monitored in a total of 181 diarrheic and healthy piglets; namely porcine astrovirus groups 1-5 (poAstV1-5), rotavirus A and C (RVA-RVC), caliciviruses (CaVs), porcine kobuvirus (PoK), hepatitis E virus (HEV), and torque teno sus virus 1 and k2 (TTsuV1-k2). All animals were sampled before 3 weeks of age, and then at 5, 12 and 20 weeks of age. In addition to the 12 targeted viruses, the virome of 12 piglets at 4 different life stages was characterized using a high-throughput sequencing approach. The presence of CaV (sapovirus), poAstV-3 or poAstV-5 was found to be a risk factor for neonatal diarrhea. Co-infections with RVC and poAstV-2, poAstV-3, and poAstV-4 and CaV co-infected with PoK or poAstV-4 were also found to be risk factors for diarrhea in piglets. RVC, PoK, poAstV-3 and poAstV-4 were the most prevalent viruses in piglets below 3 weeks of age. PoAstV-2, poAstV-4, TTsuV1 and TTsuVk2 were found to be the most prevalent viruses infecting piglets of 20 weeks of age. The enteric virome composition varied between healthy and diarrheic piglets. The alpha and beta diversity of the enteric viromes varied from under 3 weeks of age to 20 weeks and was mainly supported by phages. Overall, this study sheds new light on enteric virome dynamics and the virome's relationship with neonatal diarrhea.


Assuntos
Kobuvirus , Doenças dos Suínos , Animais , Diarreia/veterinária , Fezes , Filogenia , Suínos , Viroma
17.
PLoS One ; 17(1): e0260161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35030164

RESUMO

Many enteric viruses are found in pig farms around the world and can cause death of animals or important production losses for breeders. Among the wide spectrum of enteric viral species, porcine Sapelovirus (PSV), porcine Kobuvirus (PKoV) and porcine Astrovirus (PAstV) are frequently found in pig feces. In this study we investigated sixteen pig farms in Corsica, France, to evaluate the circulation of three enteric viruses (PKoV, PAstV-1 and PSV). In addition to the three viruses studied by RT-qPCR (908 pig feces samples), 26 stool samples were tested using the Next Generation Sequencing method (NGS). Our results showed viral RNA detection rates (i) of 62.0% [58.7-65.1] (n = 563/908) for PSV, (ii) of 44.8% [41.5-48.1] (n = 407/908) for PKoV and (iii) of 8.6% [6.8-10.6] (n = 78/908) for PAstV-1. Significant differences were observed for all three viruses according to age (P-value = 2.4e-13 for PAstV-1; 2.4e-12 for PKoV and 0.005 for PSV). The type of breeding was significantly associated with RNA detection only for PAstV-1 (P-value = 9.6e-6). Among the 26 samples tested with NGS method, consensus sequences corresponding to 10 different species of virus were detected. This study provides first insight on the presence of three common porcine enteric viruses in France. We also showed that they are frequently encountered in pigs born and bred in Corsica, which demonstrates endemic local circulation.


Assuntos
Kobuvirus
18.
Transbound Emerg Dis ; 69(3): 1649-1655, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33788413

RESUMO

Kobuviruses are known to infect the gastrointestinal tract of different animal species. Since its discovery in 2003, bovine kobuvirus (BKV) has been identified in faecal samples from diarrhoeic cattle in many countries, but only recently in North America. Although its possible role as an agent of calf diarrhoea remains to be determined, evidence is mounting. Our study reports for the first time the detection of BKV in faecal samples from diarrhoeic calves raised in Quebec, Canada. BKV was more commonly identified than eight known and common enteric calf pathogens. Further sequence analysis revealed that Canada BKV strain 1,043,507 was more closely correlated with the US BKV IL35164 strain than other BKV strains with complete genome. Continued surveillance and genomic characterization are needed to monitor BKV in the cattle around the world.


Assuntos
Doenças dos Bovinos , Kobuvirus , Infecções por Picornaviridae , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Diarreia/epidemiologia , Diarreia/veterinária , Fezes , Kobuvirus/genética , Filogenia , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Quebeque/epidemiologia
19.
Rev Argent Microbiol ; 54(2): 100-105, 2022.
Artigo em Espanhol | MEDLINE | ID: mdl-34148730

RESUMO

We describe a case of neurotropic bovine astrovirus-associated encephalitis in a Jersey dairy cow from the department of San José, Uruguay. This represents the second case of this condition reported in the Southern Hemisphere. The cow was the only one affected in a herd of 70 cows, showing neurological signs with a 2-day clinical course, before dying spontaneously. Histopathological examination revealed lymphocytic, histiocytic, and plasmacytic meningoencephalitis with neuronal necrosis, without detectable inclusion bodies. Other infectious agents, including Rabies virus(Lyssavirus), Bovine alphaherpesvirus-1 and Bovine alphaherpesvirus-5(Varicellovirus), Bovine viral diarrhea virus(Pestivirus), West Nile virus(Flavivirus), Listeria monocytogenes, Histophilus somni and other bacteria, were not detected in the brain. We propose that given the recent discovery of neurotropic astroviruses in various mammalian species, including humans, cases of astrovirus encephalitis may have gone undetected in South America. We briefly discuss the differential pathologic diagnosis of infectious bovine encephalitis.


Assuntos
Infecções por Astroviridae , Astroviridae , Doenças dos Bovinos , Encefalite , Kobuvirus , Animais , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/veterinária , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/epidemiologia , Encefalite/diagnóstico , Encefalite/veterinária , Feminino , Mamíferos
20.
Viruses ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696337

RESUMO

Calf diarrhea is one of the common diseases involved in the process of calf feeding. In this study, a sample of calf diarrhea that tested positive for bovine coronavirus and bovine astrovirus was subjected to high-throughput sequencing. The reassembly revealed the complete genomes of bovine norovirus, bovine astrovirus, bovine kobuvirus, and the S gene of bovine coronavirus. Phylogenetic analysis showed that the ORF2 region of bovine astrovirus had the lowest similarity with other strains and gathered in the Mamastrovirus unclassified genogroup, suggesting a new serotype/genotype could appear. Compared with the most closely related strain, there are six amino acid mutation sites in the S gene of bovine coronavirus, most of which are located in the S1 subunit region. The bovine norovirus identified in our study was BNoV-GIII 2, based on the VP1 sequences. The bovine kobuvirus is distributed in the Aichi virus B genus; the P1 gene shows as highly variable, while the 3D gene is highly conserved. These findings enriched our knowledge of the viruses in the role of calf diarrhea, and help to develop an effective strategy for disease prevention and control.


Assuntos
Diarreia/etiologia , Genoma Viral/genética , Animais , Astroviridae/genética , Bovinos/virologia , Doenças dos Bovinos/virologia , Coronavirus/genética , Diarreia/virologia , Fezes/virologia , Variação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Kobuvirus/genética , Norovirus/genética , Filogenia , Vírus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...